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Abstract

A numerical solution of the momentum and energy equations yields steady flow and temperature fields within a melt

spinning puddle. The model accounts for inertial, viscous, surface tension, and wetting effects, and relies on a tem-

perature-dependent viscosity to solidify ribbon to an amorphous state. A reference simulation is presented, followed by

results that examine the effect of varying individual parameters. Results demonstrate a strong influence of nozzle

wetting on puddle size; significant recirculation upstream of the nozzle slot; and the presence of both recirculation and

an unrelated bump downstream of the slot. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Planar flow casting, or melt spinning, is a process

used to produce rapidly solidified material as ribbon or

foil. Fig. 1 illustrates the process. In general terms,

molten material is ejected from a crucible through a

narrow rectangular nozzle onto a cold rotating wheel.

The nozzle is positioned just above the wheel, so that

at start-up molten material floods the gap between

the underside of the nozzle and the top of the wheel,

forming a steady state pool, or puddle. The rotating

wheel cools and solidifies material, and at steady state,

pulls solid ribbon out from beneath the puddle at the

rate at which molten material is being injected.

The process has gained wide acceptance as a means

of producing amorphous metallic materials for a variety

of applications. Our interest is motivated by the use of

amorphous Ni-base alloys as electrocatalysts in the hy-

drogen evolution reaction [1,2]. Amorphous alloys can

sustain greater electrocatalytic activity than their crys-

talline counterparts and are more corrosion resistant.

And when the apparatus is successfully producing rib-

bon, the melt spinning process offers a simple means of

quickly generating a final product from the melt.

It is the successful and repeatable production of

ribbon, however, that often presents an obstacle to uti-

lizing melt spinning as a production process. A recent

review of the fluid mechanics of melt spinning [3] fo-

cused much attention on issues of stability. An unstable

process can reduce the rate of heat transfer from the

melt, and thus yield a crystalline rather than an amor-

phous material. Various surface features of a ribbon are

indications of a flow instability. At worst, a steady

puddle fails to form at all, and the process yields a spray

of material rather than a ribbon. Tuning the process is

difficult because it depends on a large number of fac-

tors, including material composition and properties,

melt temperature and pressure, geometric factors, wheel

speed, the quality of the wheel surface, and the presence

of a gas phase about the puddle. Our own experience

with melt spinning has occasionally proved frustrating.

Spinning some new alloy composition usually demands

a significant investment of time to find the operating

conditions that will produce a successful run of ribbon.

This experience led us to develop the model presented

here. While there are certainly other models of the
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process, including numerical ones, we are aware of few

that represent a complete solution of the momentum

and energy equations, and none that yield well-resolved

results. In this paper, we present a model and various

results that illustrate the effect of changes to various

parameters on the flow and temperatures fields within a

puddle. This paper focuses on steady solutions, and so

does not explicitly address the issue of stability. Rather,

we intend for this model and these results to serve as the

basis for a subsequent study of the stability of the pro-

cess.

We turn now to a brief summary of other models of

puddle flow and temperature fields, and begin with the

simplified integral analyses of Berger and Ai [4] and

Steen et al. [5] that consider overall balances for mass,

momentum, and energy within the puddle. The analyses

do not provide detailed information about flow and

temperature fields, but do yield important relationships

between ribbon thickness and various operating pa-

rameters including applied pressure, nozzle geometry,

wheel speed, and either melt and wheel temperatures [4]

or a solidification rate [5]. Of note, both papers con-

sidered the extent of wetting between the melt and the

underside of the nozzle, which has received little atten-

tion in subsequent studies.

More sophisticated analyses quickly turn to two-

dimensional (2D) numerical studies, invoking various

assumptions to simplify the computations. Gutierrez

and Szekely [6] studied the puddle downstream of the

nozzle, solving a set of equations based on lubrication

Nomenclature

B slot breadth

f volume fraction
~FFST volumetric surface tension force
~gg gravity

G gap height

h heat transfer coefficient

H ribbon thickness

k thermal conductivity

n̂n unit normal vector

p pressure

Q inlet flow rate per unit area

Re Reynolds number ð� qUH=lðT0ÞÞ
S free surface area

t time

Dt timestep

T temperature

Tint ribbon/wheel interface temperature

T0 initial melt temperature

Tsol solid temperature

T1 ambient temperature

u, v velocity components

U wheel speed
~VV velocity

We Weber number ð� qU 2H=rÞ

~xx,~yy position vectors

Dxi, Dyj cell dimensions

Greek symbols

a thermal diffusivity

d Dirac delta function

� convolution radius

j curvature

l dynamic viscosity

h contact angle

q density

r surface tension

~ss viscous stress tensor

Subscripts

i, j cell coordinates

in nozzle slot

noz nozzle underside

s free surface

w wheel

Superscripts
0 interim

~ convolved

n, nþ 1 time levels

T transpose

Fig. 1. Schematic of the melt spinner (not to scale).
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theory, coupled to an energy equation that accounted

for phase change, and an empirical equation for down-

stream meniscus shape as a function of solidified thick-

ness and operating parameters. Of note is the prediction

of a recirculation zone in the downstream puddle above

the ribbon. Gong et al. [7] made less assumptions by

solving the boundary layer equations for flow, heat

transfer, and phase change within the downstream

portion of a puddle, examining the influence of various

process parameters on the resulting puddle dynamics.

The authors ignored surface tension along the down-

stream meniscus, and defined downstream detachment

as the point of boundary layer separation. The authors

went on to compare their numerical results to video

images of actual puddle profiles, by varying the heat

transfer coefficient until the calculated position of the

downstream detachment point matched that observed

experimentally. Wang and Matthys [8,9] subsequently

extended the model of Gong et al. [7], implementing an

improved solid/liquid interface tracking algorithm, while

pointing out that the boundary layer equations were ill-

suited to modeling the downward flow out of the nozzle

and the flow near the detachment point. The au-

thors used the model to focus on the heat transfer and

solidification behaviour of a pure material, first for

equilibrium solidification [8], and then allowing for

undercooling and recalescence [9].

While the aforementioned models invoke various

simplifications of the flow equations, and solved for flow

only downstream of the nozzle, there are a series of

studies that have attempted to solve the complete steady

problem, including inertial, viscous, surface tension and

wetting effects as well as solving for (rather than pre-

scribing) the puddle menisci locations (using ‘‘volume-

of-fluid’’ or VOF, codes). Many of the results, however,

are based on very coarse mesh calculations, from which

little quantitative information can be gleaned. Takeshita

and Shingu [10] utilized SOLA-VOF [11], a 2D free

surface flow code, to solve strictly for flow on a mesh of

40� 10 cells. Wu et al. [12] added an energy equation

and a temperature-dependent viscosity to SOLA-VOF,

but again underresolved the puddle, with the ribbon

thickness less than the height of a single cell. Chen and

Hwang [13,14] presented similar calculations again at

similar resolutions, both in two dimensions [13] and in

three [14].

The only other numerical results of note are the

better-resolved 2D calculations of Korzekwa et al. [15]

and Thoma et al. [16], using FLOW-3D, a commercial

VOF code that includes heat transfer and phase change

capabilities. Of note is that simulations were run with an

applied nozzle pressure rather than a prescribed inflow

rate, and that the numerical solutions never reached a

steady state, but rather fluctuated. The authors used

measures of these fluctuations as an indication of sta-

bility, and found a reasonable correlation between this

numerical stability and their ability to successfully spin

actual ribbons.

This is clearly a brief overview of previous work. For

a more complete review of the fluid mechanics of melt

spinning, see the excellent review article by Steen and

Karcher [3]. It seems fair to say that although much has

been learned by way of modeling, there is room for

another model, and in particular a numerical treatment

of a complete set of equations applied to the entire

puddle, with results calculated on sufficiently fine meshes

to capture some of the details of the flow and temper-

ature fields. This is our intent here. We consider the melt

spinning of an amorphous material, from the initial

impact of fluid onto the wheel through to the formation

of a steady state puddle and the generation of ribbon of

uniform thickness. The model incorporates the essential

physics, including inertial, viscous, surface tension, and

wetting effects, and relies on a temperature-dependent

viscosity to solidify the ribbon. The equations are solved

throughout the puddle, from the upstream meniscus to

the downstream emergence of ribbon. Of interest are the

flow and temperature fields within the puddle, and the

manner in which these fields respond to changes in

various operating parameters. In the remainder of the

paper, we detail the equations and numerical meth-

odology, briefly demonstrate some validation results,

describe a reference simulation corresponding to exper-

imental conditions that have proved successful in our

laboratory, and finally present the results of a series of

other simulations that consider the effect of changing

reference operating conditions one at a time.

2. Methodology

2.1. Equations

We formulate the model based on the following as-

sumptions:

• since ribbon width is much larger than the gap height

G, the puddle is essentially 2D

• since the wheel diameter is much larger than the pud-

dle length, wheel curvature beneath the puddle is neg-

ligible, and the bottom of the puddle is assumed to be

flat

• melt inflow rate Q is constant; this frees the model of

solving for flow within the crucible and nozzle that

are much larger than the puddle, at the expense

of not applying crucible pressure as a boundary con-

dition

• the melt is incompressible and Newtonian, and pud-

dle flow is laminar

• melt density q, surface tension r, and thermal diffu-

sivity a are constant; dynamic viscosity l varies with

temperature
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• spinning occurs within a vacuum chamber, so that

viscous stresses at the free surface are zero, and the

only fluid flow is within the melt

• the ribbon cools to an amorphous state, which im-

plies that the cooling rate is on the order of 106 (K/s)

• the wheel is the sole heat sink, and contact between

ribbon and wheel is characterized by a single value

of a heat transfer coefficient h

• the wheel temperature remains constant; while stud-

ies have demonstrated that wheel temperature in-

creases at start-up, we are concerned with steady

state behaviour

• the nozzle is adiabatic and radiative heat transfer

from the puddle is negligible

The third assumption requires some elaboration. In

practice, one applies a crucible pressure that drives fluid

through the nozzle. The subsequent flow rate, and cor-

responding ribbon thickness, are then a function of the

applied pressure, rather than a parameter that an op-

erator can set. We, like others [6–10,12–14], however,

chose to consider the steady problem offered by impos-

ing a fixed inflow rate. This tends to simplify the num-

erics, but at the expense of imposing a stability on the

flow that may not exist in practice.

The resulting problem is strictly one of fluid flow and

heat transfer, with solidification resulting from the in-

crease in viscosity associated with the cooling of the

melt. The equations for conservation of mass, momen-

tum, and energy in the melt phase are

r 	 ~VV ¼ 0 ð1Þ

o~VV
ot

þr 	 ð~VV ~VV Þ ¼ � 1

q
rp þ 1

q
r 	 ~ss þ~gg þ 1

q
~FFST ð2Þ

oT
ot

þr 	 ð~VV T Þ ¼ ar2T ð3Þ

Since the melt is Newtonian, the shear stress tensor ~ss
may be written

~ss ¼ lðr~VV þ ðr~VV ÞTÞ ð4Þ

The viscosity varies with temperature. We assume it to

be of the Vogel–Fulcher form [17] commonly used to

describe the viscosity variation of amorphous materials

through the glass transition

l ¼ l0 exp
A

T � C

� �
ð5Þ

l0, A and C are material-specific constants. Surface

tension ~FFST is modeled as a volume force acting on fluid

near the puddle-free surface, as originally formulated by

Brackbill et al. [18]

~FFSTð~xxÞ ¼ r
Z
S

jð~yyÞn̂nsð~yyÞdð~xx�~yyÞdS ð6Þ

n̂ns represents the unit normal to the free surface directed

into the fluid,~yy is a position vector to points on the free

surface, j ¼ �r 	 n̂ns is the curvature of the free surface,
d is the Dirac delta function, and the integration is

performed over the free surface S.

In addition to the flow equations, the model includes

an algorithm to track the location of the puddle menisci.

The approach chosen is a volume tracking technique; we

define a scalar function f as

f ¼ 1 within the melt
0 without

�
ð7Þ

Since f is passively advected with the flow, it satisfies the

advection equation

of
ot

þ ð~VV 	 rÞf ¼ 0 ð8Þ

Boundary conditions are applied at the solid underside

of the nozzle, at the nozzle slot, at the wheel, and at the

puddle-free surface; we denote these boundaries by

subscripts noz, in, w and s respectively.

At solid surfaces, no-penetration and no-slip condi-

tions apply. At the wheel, this implies that fluid moves

with the wheel speed U. At the puddle-free surface, the

boundary condition on velocity is the zero stress con-

dition, ~sss ¼ 0, and since surface tension has been in-

cluded in Eq. (2), the boundary condition on pressure

reduces to ps ¼ 0. Evaluation of Eq. (6) requires that n̂ns
be defined at the triple points along the nozzle and

wheel, where the solid, fluid and vacuum meet. We im-

pose a contact angle h at these points, as shown in Fig. 2.
hw, at the upstream meniscus, will be an advancing dy-

namic contact angle; at steady state, the two hnoz will be
static angles. Although dynamic contact angles are a

function of contact line velocity, we assign constant

values to all angles, for lack of data. At the nozzle slot,

we impose a parabolic velocity profile corresponding to

the melt flow rate Q, and a zero gradient condition on

pressure, to reflect what will in reality be a small change

in pressure relative to pressure variations within the

puddle. The melt flowing into the gap is assigned the

initial melt temperature T0, and the temperature gradient

Fig. 2. Closeup of the puddle.
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within the melt at the wheel is defined via a heat transfer

coefficient h

krT 	 n̂nw ¼ hðTint � T1Þ ð9Þ

k is the thermal conductivity of the melt, and Tint and T1
are the ribbon/wheel interface temperature and the am-

bient temperature, respectively.

As for initial conditions, since the process begins with

an empty gap, the boundary conditions at the nozzle slot

also serve as the initial conditions for the model.

2.2. Numerical formulation

The basis for our model is RIPPLE [19], a 2D fixed-

grid Eulerian code written specifically for free surface

flows with surface tension. Significant improvements

have been incorporated into RIPPLE, including new

surface tension and interface tracking algorithms, and a

temperature-dependent dynamic viscosity. What follows

is an overview of the numerical formulation, focusing on

the improvements.

Eqs. (1)–(6) are discretized according to typical finite

volume conventions on a rectilinear grid, illustrated in

Fig. 3(a), that extends upwards from the wheel surface

to the nozzle underside. The left edge of the grid ex-

tends beyond the upstream end of the puddle; the right

edge is located sufficiently far downstream that the fluid

exiting the grid can be considered solid ribbon. Veloci-

ties are specified at the centre of cell faces, and pressure

and temperature at each cell centre, illustrated in Fig.

3(b).

2.2.1. Interface tracking

To discretize f we define a volume fraction fi;j that
represents the fraction of the volume of cell ði; jÞ occu-
pied by fluid

fi;j ¼
1

Dxi Dyj

Z
Dxi

Z
Dyj

f dy dx ð10Þ

Cells filled with fluid are characterized by fi;j ¼ 1, empty

cells by fi;j ¼ 0, and cells that define a portion of the

interface by 0 < fi;j < 1, deemed ‘‘interface cells’’. To

illustrate, Fig. 4(b) portrays the volume fractions cor-

responding to the exact (albeit unknown) interface of

Fig. 4(a).

The model incorporates the interface advection al-

gorithm of Youngs [20] to solve Eq. (8) geometrically.

At each timestep, the algorithm consists of two steps.

First, the free surface is reconstructed by locating a

plane within each interface cell corresponding to fi;j and
an estimate of the orientation of the interface n̂ni;j. The
reconstructed interface is depicted in Fig. 4(b); note that

the algorithm does not require that interface planes be

contiguous. The second step is a geometric evaluation of

volume fluxes using the latest cell face velocities, to

obtain an updated volume fraction field. Fig. 4(c) illus-

trates the calculation of a volume flux across one face of

a cell.

2.2.2. The pressure/velocity/temperature solution

A temporal discretization of Eq. (2) yields the basis

for a two-step projection method

~VV 0 � ~VV n

Dt
¼ �r 	 ð~VV ~VV Þn þ 1

qn
r 	 ~ssn þ~ggn þ 1

qn
~FF n
ST ð11Þ

Fig. 3. (a) An example of the numerical grid (260� 40 cells) with a puddle superimposed; (b) an individual cell ði; jÞ, with velocities u

and v specified at the cell faces, pressure p and temperature T at the cell centre; (c) a staggered x-momentum control volume centred at

ðiþ 1=2; jÞ, with shear stresses specified at cell faces.
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~VV nþ1 � ~VV 0

Dt
¼ � 1

qn
rpnþ1 ð12Þ

In the first step, Eq. (11), an interim velocity ~VV 0 is

computed explicitly from convective, viscous, gravita-

tional and surface tension accelerations of the known

field ~VV n for a timestep Dt. In the second step, ~VV 0 is

projected onto a divergence-free velocity field: combin-

ing Eq. (12) with Eq. (1) at the new time level ðnþ 1Þ
yields a Poisson equation for pressure

r 	 1

qn
rpnþ1

� �
¼ 1

Dt
r 	 ~VV 0 ð13Þ

Although the fluid is assumed incompressible, the den-

sity is retained within the divergence operator to account

for non-zero density gradients at the puddle-free surface.

At solid surfaces, we impose a zero gradient condition

on pressure

rp 	 n̂nnoz ¼ rp 	 n̂nw ¼ 0 ð14Þ

as a numerical means of enforcing the zero velocity

condition. The resulting set of linear equations in pnþ1 is
symmetric and positive definite; a solution is obtained at

each timestep with an incomplete Cholesky conjugate

gradient (ICCG) solver. The new velocity field ~VV nþ1 is

then evaluated via Eq. (12).

For control volume faces between two cells contain-

ing fluid, the convective term is discretized according to

the method of van Leer [21]. Beginning with a second

order central difference approximation for the fluxed

momentum, the method introduces just enough up-

winding to guarantee stability. At faces adjacent to a

free surface, where one cannot construct a second-order

approximation, momentum fluxes are approximated by

upwind values.

Shear stresses are evaluated via a central differencing

scheme at the staggered cell faces, as illustrated in Fig.

3(c). Viscosities associated with the shear stresses are a

function of the local temperature: sxx and syy are cell-

centred quantities, and thus a function of the cell-cen-

tred temperature; sxy are located at cell vertices, where

the viscosity is evaluated as a harmonic mean of the four

surrounding viscosities.

Surface tension is treated in the following manner.

To begin, a discrete surface tension force ~FFSTi;j is evalu-

ated for each interface cell

~FFSTi;j ¼ rji;j
Si;j

Dxi;j Dyi;j
n̂ns;i;j ð15Þ

Si;j represents the interface area contained within the

cell, evaluated as a byproduct of the interface advection

algorithm. A finite kernel d�, acting over a radius �, is
then introduced to approximate d. The ~FFSTi;j are con-

volved over the radius � to yield a force field ~~FF~FF STi;j dif-

fused over cells in the vicinity of the free surface

~~FF~FF i;j ¼ 2fi;j
X
m;n

~FFSTm;nd�ð~xxi;j �~yym;nÞDxm Dyn ð16Þ

Note that the 2fi;j in front of the summation serves as a

weighting function to transform the volumetric force

into a body force acting only on cells that contain fluid.

Estimates of n̂ni;j and ji;j, which are geometric char-

acteristics of the interface, are obtained from the volume

fractions

n̂n ¼
~rrf

j ~rrf j
j ¼ � ~rr 	 n̂n ð17Þ

Because the fi;j are discontinuous, estimates of ~rrf are

obtained by evaluating the gradient of a convolved fi;j
field. We employ the same kernel d� to convolve fi;j as
~FFSTi;j

d�ð~xxÞ ¼ 1þ cosðpj~xxj
�
Þ

� �
=c j~xxj6 �

0 j~xxj > �

(
ð18Þ

where c normalizes the kernel

c ¼ �2ðp2 � 4Þ=p ð19Þ

It should be noted that this method of evaluating n̂n
is different than that proposed by Youngs [20]. We do,

however, incorporate all other aspects of Youngs’ in-

terface advection algorithm.

Fig. 4. The interface tracking method. (a) An exact liquid interface. (b) The corresponding volume fractions and planar interfaces. (c)

With velocity u positive, the shaded region to the right of the dotted line is advected into the neighbouring cell during the timestep dt.
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Following the solution of the flow equations at each

timestep, Eq. (3) is solved for a new temperature field

T nþ1. The convective and diffusive terms are treated ex-

plicitly in a manner similar to that of the flow equations,

but with a thermal diffusivity that is not a function of

temperature.

2.2.3. Timestep restrictions

The explicit evaluation of the convective, viscous,

surface tension, and thermal diffusion terms places the

following restrictions on the magnitude of the allowable

timestep, in order to maintain the stability of the solu-

tion

max
jui;jjDt

Dxi
;
jvi;jjDt

Dyj

	 

< 1 ð20Þ

Dt <
q
l
	 ðDxiÞ2ðDyjÞ2

ðDxiÞ2 þ ðDyjÞ2
ð21Þ

Dt <

ffiffiffiffiffiffiffiffi
q
4pr

r
	min ðDxiÞ3=2; ðDyjÞ3=2

h i
ð22Þ

Dt <
1

a
	 ðDxiÞ2ðDyjÞ2

ðDxiÞ2 þ ðDyjÞ2
ð23Þ

The viscous restriction is by far the most stringent of

these, because as the melt cools, the viscosity increases

exponentially, and the timestep becomes very small.

While an implicit treatment of the viscous term would

remove this restriction, such an implementation would

substantially increase the complexity of the flow algo-

rithm. While we are pursuing such an approach for fu-

ture work, we devised the following alternative within

the framework of the methodology presented here.

2.2.4. Flow in ‘‘solid ribbon’’

As the melt cools, the fluid velocity rapidly ap-

proaches U, as one would expect. And although there is

no explicit interface between liquid and solid material,

there certainly is a temperature below which there is

little point to solving the flow equations. This led us to

incorporate a filter into the algorithm, to flag those cells

that had dropped below some solid temperature Tsol, to
remove them from the flow solution domain, and in-

stead impose upon them the wheel speed U. Tsol was
evaluated by running simulations without the filter, and

examining the relationship between velocity and tem-

perature. For all of the simulations presented here, a

fluid velocity was within one percent of U prior to a cell

being flagged.

3. Results and discussion

The parameters associated with a series of sim-

ulations are summarized in Table 1. We begin this

discussion by considering a reference problem, then

briefly present results of a validation study, and finally

examine a series of simulations that consider the influ-

ence of various parameters on the flow and temperature

fields within a melt spinning puddle.

Table 2 presents material properties that we consider

representative of a Ni–B alloy that we have spun in our

laboratory. For lack of other data, the constant prop-

erties are the melting point values of pure Ni. The

constants in the viscosity relationship were chosen to

yield a reasonable value of viscosity (4� 10�3 Pa s) at

the melting point (
1400 K) of our alloy.

The reference problem corresponds to operating pa-

rameters that we have used to successfully spin Ni–B

ribbon, and are listed in the first row of Table 1. The

grid geometry is defined by a gap height G ¼ 0:5 mm, a
slot breadth B ¼ 0:5 mm, and a nozzle underside that

extends 2 mm on other side of the slot. The heat transfer

coefficient h is an unknown; our value of h ¼ 106 W/

m2 K is based on suggestions in the literature (e.g. [7,22–

24]). The value is on the high end of reported values,

which we consider appropriate for the case of a melt

cooling to an amorphous state in an ambient vacuum.

On the underside of the nozzle, we prescribed a very

non-wetting contact angle hnoz ¼ 170� (see Fig. 2), based
on experimental observations of nearly spherical solid

melt that remained attached to the underside of the

nozzle after the apparatus had cooled. The wheel con-

tact angle at the upstream end of the puddle was set to

hw ¼ 90� (see Fig. 2); while this value is arbitrary, we will
show that it hardly matters, because the contribution of

capillary forces at the wheel surface is small relative to

viscous and inertial ones.

We ran a series of validation simulations of the ref-

erence problem (Table 1) to assess the influence of grid

resolution and the value of Tsol. The plots of Fig. 5(a)

and (b) present total puddle volume and ribbon thick-

ness versus time as a function of mesh resolution; Fig.

5(c) and (d) presents the same indicators as a function of

Tsol. All of our tests demonstrated good convergence.

The results are also indicative of a number of other

measures that were plotted. Note that the total fluid

volume increases linearly from t ¼ 0 under a prescribed

flow rate until cold fluid (ribbon) begins to exit the mesh

at about 0.3 ms. Note too that while the curves of total

fluid volume are smooth, the curves of ribbon thickness

fluctuate somewhat. We only ran the validation simu-

lations to 5 ms, before a steady state had been reached.

Later simulations were run to steady state, with the

elapased time listed in the last column of Table 1. At

steady state, the fluctuations in ribbon thickness had

disappeared, with the volume of material exiting the grid

equal to the prescribed flow rate. The validation pro-

vided the data required to assess grid independence: we

ran all remaining simulations at a resolution of 40 cells

in the y-direction by at least 220 cells, adding cells in the
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x-direction to accommodate longer puddles. The mesh

was equally spaced in the x-direction, while cells in the y

were focused near the wheel, as illustrated in Fig. 3(a).

The temperature at which ribbon was deemed solid was

specified as Tsol ¼ 950 K.

We turn now to the results of the reference simula-

tion. Fig. 6 illustrates the evolution of the puddle shape

to 10.0 ms, when the profile has ostensibly reached

steady state, although we ran the simulation to 19.5 ms.

Fig. 7 illustrates the corresponding steady state stream-

lines and isotherms. Note that the plots of Fig. 7 and of

many subsequent figures have been stretched four times

in the vertical direction, to offer a clearer view of the

flow and temperature fields within the puddle. Fig. 8

illustrates the pressure variation along the base of the

puddle, relative to a zero ambient pressure.

We begin with a few observations regarding Fig. 6.

Note first that the puddle shapes are qualitatively similar

to the few photographs that have been published (e.g.

[6,7,25–27]), and to the results of other numerical studies

(e.g. [6–10,12,13]). While the upstream end of the puddle

moves well away from the nozzle, the downstream end is

pinned at the slot. The reason, as we will show, is related

to the large value of hnoz that we imposed, which reflects

a large difference in solid surface energies on either side

of the contact line. Note too that the convex puddle

profile at the upstream end is not symmetric about the

gap midline, even though it may appear so in the profile

at 10.0 ms. The convexity is a direct result of the large

value of hnoz at the top of the gap, and of the wheel

moving to the right at the bottom. Finally, note the

presence of a subtle bump in the puddle profile down-

stream of the slot, which has been observed previously

[6].

Fig. 7 clearly illustrates the presence of recirculation

both up and downstream of the slot. The downstream

recirculation has been seen before [6,10], and is thought

to be related to the bump. We will say more about this in

a moment. On the upstream side, there are two vortices

rotating in different directions, driven by the downward

flow out of the nozzle. The corresponding isotherms

reflect this movement of fluid, as the 1450 and 1400 K

Table 1

Summary of simulations

U (m/s) Q (m/s) T0 (K) h (W/m2 K) hnoz hw Tsol (K) H=G Re We Resolution Calc. time

(ms)

Reference

26 2.25 1500 1� 106 170� 90� 950 0.087 3237 135 220� 40 19.5

Validation

26 2.25 1500 1� 106 170� 90� 940 0.087 3237 135 165� 30 5.0

26 2.25 1500 1� 106 170� 90� 960 0.087 3237 135 165� 30 5.0

26 2.25 1500 1� 106 170� 90� 970 0.087 3237 135 165� 30 5.0

26 2.25 1500 1� 106 170� 90� 950 0.087 3237 135 110� 20 25.0

26 2.25 1500 1� 106 170� 90� 950 0.087 3237 135 132� 24 15.0

26 2.25 1500 1� 106 170� 90� 950 0.087 3237 135 165� 30 20.0

26 2.25 1500 1� 106 170� 90� 950 0.087 3237 135 275� 50 5.0

Results

13 2.25 1500 1� 106 170� 90� 950 0.173 3237 68 260� 40 9.25

39 2.25 1500 1� 106 170� 90� 950 0.058 3237 203 220� 40 20.0

26 1.125 1500 1� 106 170� 90� 950 0.043 1618 68 220� 40 8.5

26 3.375 1500 1� 106 170� 90� 950 0.130 4855 203 260� 40 12.75

26 2.25 1400 1� 106 170� 90� 950 0.087 2141 135 220� 40 14.6

26 2.25 1600 1� 106 170� 90� 950 0.087 4453 135 240� 40 23.85

26 2.25 1500 1:5� 106 170� 90� 950 0.087 3237 135 220� 40 14.0

26 2.25 1500 0:5� 106 170� 90� 950 0.087 3237 135 260� 40 13.85

26 2.25 1500 1� 106 10� 90� 950 0.087 3237 135 240� 40 1.35

26 2.25 1500 1� 106 90� 90� 950 0.087 3237 135 240� 40 25.0

26 2.25 1500 1� 106 130� 90� 950 0.087 3237 135 220� 40 35.0

26 2.25 1500 1� 106 170� 130� 950 0.087 3237 135 220� 40 20.0

The highlighted quantities indicate how the simulations differ from the reference simulation.

Table 2

Thermophysical properties of the Ni–B melt

q ¼ 7870 kg/m3

r ¼ 1:7 N/m

l ¼ 1:66� 10�4 exp 2180
T�722
� �

Pa s (T in K)

k ¼ 90 W/mK

a ¼ 2:6� 10�5 m2/s
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isotherms extend vertically all the way up to the nozzle.

As a result, the fluid temperature at the upstream melt/

wheel contact line is significantly lower than T0, the
initial melt temperature. Also important is that the

streamlines reveal that a significant fraction of melt

ejected from the nozzle flows upstream before being

entrained by the rotation of the wheel. As a result,

models of only the flow downstream of the nozzle (e.g.

[6–9]) are simplifying the problem in a way that may not

always be appropriate.

The pressure at the base of the puddle varies as one

might expect: peak pressure is beneath the inlet, turning

the flow onto the wheel. At the upstream meniscus, the

non-zero pressure reflects the influence of surface ten-

sion across a highly curved interface. Along the down-

stream menisci, the pressure decreases more gradually to

zero. The appearance of a minimum value appears re-

lated to the nature of the flow downstream of the inlet:

fluid turns almost 90� before turning again towards the

wheel where the ribbon emerges from the puddle.

Fig. 9 presents the results of simulations examining

the effect of decreasing the nozzle contact angle hnoz
from the reference value of 170�. Of note is the move-
ment of the downstream contact line away from the

nozzle slot, with distance increasing as hnoz decreases.

The resulting downstream flowfield is characterized by a

much larger recirculation region, and by a very flat

downstream meniscus, with no sign of the bump visible

in the profile of Fig. 7. Such a configuration, of a de-

tachment point downstream of the nozzle slot, is how

puddle geometry is typically portrayed, which suggests

that hnoz ¼ 170� may be too high a value. On the other

hand, the value was chosen independent of the results of

the model, based on an experimental observation, and

so we deemed it inappropriate to adjust the value. We

also ran a simulation with hnoz ¼ 10�, a very wetting

condition in sharp contrast to our reference simulation.

However, we stopped the simulation at 1.35 ms, because

fluid was advancing quickly along the upstream under-

side of the nozzle, and would soon have reached the

mesh boundary. The resulting concave meniscus appears

very unrealistic. Fig. 10 portrays the results at the time

the simulation was stopped.

To complete this discussion of wetting behaviour, we

also ran a simulation for hw ¼ 130�. Unlike the influence
of hnoz, however, the results of this simulation were

nearly indistinguishable from the reference results. It is

clear that capillary forces are small relative to inertial

and viscous ones at the wheel surface, in sharp contrast

to the situation at the nozzle underside.

Fig. 5. The effect of mesh resolution on (a) total fluid volume and (b) ribbon thickness, and the effect of the value of Tsol on (c) total

fluid volume and (d) ribbon thickness.
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Figs. 11–14 present results of simulations that con-

sider the effect of varying wheel speed U, flow rate Q,

inlet temperature T0, and heat transfer coefficient h, re-

spectively. For each of these variables, simulations were

run for values both greater and less than the reference

value. It is important to note that the parameter ranges

are not all equivalent. While we vary T0 by only 100 K

on either side of 1500 K because we control this pa-

rameter experimentally, we investigate a range of h be-

tween 0.5 and 1:5� 106 W/m2 K because h is unknown,

and the range of values quoted in the literature is very

high. As a result, the plots of Fig. 14, for example, differ

more than the plots of Fig. 13.

As one would expect, puddle length decreases as the

characteristic cooling time decreases. Lower values of T0

Fig. 7. Steady flow and temperature fields for the reference simulation. Note that this and many subsequent figures have been stretched

in the vertical direction.

Fig. 6. Evolution of the puddle shape to a steady configura-

tion––reference simulation.

Fig. 8. Pressure variation along the base of the puddle, relative

to a zero pressure outside the puddle. Note that the puddle

profile (dashed) has been superimposed on the graph, for

clarity.
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and Q, that decrease the energy input into the puddle,

and higher values of U and h that increase the cooling

capacity, all lead to shorter puddles. And the flipside is

true, that greater superheat and flow rate, slower wheel

speed, and a lower value of h lead to longer puddles. The

four figures also reveal that the number of upstream

vortices increases with the length of the puddle upstream

of the slot, while the downstream detachment point re-

mains fixed at the downstream edge of the slot regardless

of other puddle characteristics. Ribbon thickness H is

not the same for each of these eight simulations, but

rather varies as H ¼ QB=U , and is listed in Table 1. As a

result, the ribbons of Figs. 11 and 12 differ from the

reference ribbon, and in retrospect, it appears that the

mesh of Fig. 11(a) should have extended somewhat

further downstream, as the temperature of the ribbon

exiting the mesh is still above Tsol.
Turning to the downstream flowfields of Figs. 11–

14, we note the presence of both vortices and bumps,

but little correlation between them. The short puddles

demonstrate more recirculation than the long ones,

yet have very straight downstream menisci. In sharp

Fig. 9. Comparison of the flow and temperature fields for different values of the contact angle at the underside of the nozzle:

(a) h ¼ 90� and (b) h ¼ 130�.

Fig. 11. Comparison of the flow and temperature fields for different values of the wheel speed: (a) U ¼ 13 m/s and (b) U ¼ 39 m/s.

Fig. 10. Comparison of the flow and temperature fields for

hnoz ¼ 10� at 1.35 ms.
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Fig. 12. Comparison of the flow and temperature fields for different values of the inlet flow rate: (a) Q ¼ 3:375 m/s and (b) Q ¼ 1:125

m/s.

Fig. 13. Comparison of the flow and temperature fields for different values of the initial melt temperature: (a) T0 ¼ 1600 K and

(b) T0 ¼ 1400 K.

Fig. 14. Comparison of the flow and temperature fields for different values of the heat transfer coefficient: (a) h ¼ 0:5� 106 W/m2 K

and (b) h ¼ 1:5� 106 W/m2 K.
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contrast, the long puddles have noticeable bumps near

the downstream end of the puddles, but only small

vortices much nearer the nozzle slot. If one examines the

isotherms within each of the four longer puddles, one

can see the bump bounded by puddle surface tempera-

tures of 
1200 K at the top and 1100 K at the bottom.

The corresponding change in viscosity is more than

threefold.

The results suggest that for the system modeled here,

that the ribbon is formed at about 1100 K, and that

the flowfield above the ribbon is then defined by the

downstream distance required to cool to that tempera-

ture. At shorter distances, the downstream meniscus is

straight and recirculation is driven by a downward flow

out of the slot. As the downstream distance to 1100 K

increases, the flow out of the slot is allowed to turn more

gradually, and thus tends not to drive a vortex. The

bump then appears at whatever point the ribbon emer-

ges from beneath the longer puddle.

4. Conclusions

We have considered the melt spinning of an amor-

phous material, presenting flow and temperature fields

of a steady puddle. Results of a reference simulation are

followed by a series of results corresponding to changes

in individual operating parameters.

Results suggest the following:

• that the extent of wetting of the melt to the underside

of the nozzle dramatically affects the position of the

upstream and downstream detachment points, and

thus the size of the puddle

• by contrast, wetting of the wheel at the upstream end

of the puddle is insignificant relative to inertial and

viscous effects

• flow within the puddle upstream of the slot is charac-

terized by a series of vortices, with the extent of recir-

culation proportional to the upstream size of the

puddle

• recirculation downstream of the slot appears only in

shorter puddles, driven by a downward flow out of

the slot; a characteristic bump that has been observed

previously appears only at the far downstream end of

longer puddles, and is related to the adjustment of

the puddle flow to the emergence of ribbon from be-

neath the puddle
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